3x^2+7x^2=34^2

Simple and best practice solution for 3x^2+7x^2=34^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+7x^2=34^2 equation:



3x^2+7x^2=34^2
We move all terms to the left:
3x^2+7x^2-(34^2)=0
We add all the numbers together, and all the variables
10x^2-1156=0
a = 10; b = 0; c = -1156;
Δ = b2-4ac
Δ = 02-4·10·(-1156)
Δ = 46240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{46240}=\sqrt{4624*10}=\sqrt{4624}*\sqrt{10}=68\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-68\sqrt{10}}{2*10}=\frac{0-68\sqrt{10}}{20} =-\frac{68\sqrt{10}}{20} =-\frac{17\sqrt{10}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+68\sqrt{10}}{2*10}=\frac{0+68\sqrt{10}}{20} =\frac{68\sqrt{10}}{20} =\frac{17\sqrt{10}}{5} $

See similar equations:

| 24h+h-17h-7h=30 | | 9-2m=-5m | | 3x-(6x+4)=2x-19 | | -3(-3+1/3y)-5y=-9 | | 7y−4=17 | | 4z^2-6z=0 | | X+(x*4)=24 | | -7x5=8x-25 | | 1=1-2a-7a | | –2(p+4)=12 | | 6j+3j+j=20 | | -4n=13-5n | | -14(m+8)+5m=-3 | | 36+16=c^2 | | -36+6x=-4(2x+7) | | -s+s=0 | | 48g+g+3g-24g-22g=6 | | 15v-19=-4+v+15v | | 6+5p=4p+10 | | 5w-16=8(w+1) | | -81=-10u+-21 | | 12x-96=12(x-8) | | 6+–w=17 | | 9+n/5=12 | | 17w-16w=16 | | 10h-7=17+6h | | 8a(5+5)=21 | | -8b=-8-7b | | 300-4a=28 | | 18=f/4+16 | | -²/¹⁷x=8 | | 28/44=3/r |

Equations solver categories